International Session (Symposium)1 (JSH, JSGE, JSGCS)
November 4, 9:30–12:00, Room 4 (Portopia Hotel South Wing Portopia Hall)
IS-S1-8_H

NRF2 activator as dietary phytochemical against alcoholic liver disease-related fibrosis

Kosuke Kaji1
Co-authors: Koji Ishida1, Hitoshi Yoshiji1
1
Department of Gastroenterology, Nara Medical University
Alcoholic liver disease (ALD)-related fibrosis results from a variety of mechanisms including the accumulation of acetaldehyde, reactive oxygen species, and hepatic overload of endogenous lipopolysaccharide (LPS). Sulforaphane, a phytochemical found in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) and exerts anticancer, antidiabetic, and antimicrobial effects; however, few studies investigated its efficacy in the development of ALD-related fibrosis. Herein, we investigated the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell (HSC) lines, respectively, as well as in a mouse model of alcoholic liver fibrosis induced by ethanol plus carbon tetrachloride (EtOH/CCl4). Sulforaphane treatment induced the activity of acetaldehyde-metabolizing mitochondrial aldehyde dehydrogenase (ALDH2) in HepaRG cells and suppressed the acetaldehyde-induced proliferation and profibrogenic activity in LX-2 cells with upregulation of Nrf2-regulated antioxidant genes, including HMOX1, NQO1, and GSTM3. Moreover, sulforaphane attenuated the LPS/toll-like receptor 4 (TLR4)-mediated sensitization to transforming growth factor-β with downregulation of NADPH oxidase 1 (NOX1) and NOX4. In EtOH/CCl4-treated mice, oral sulforaphane administration augmented hepatic acetaldehyde metabolism. Additionally, sulforaphane significantly inhibited Kupffer cell infiltration and fibrosis, decreased fat accumulation and lipid peroxidation, and induced Nrf2-regulated antioxidant response genes in EtOH/CCl4-treated mice. Furthermore, sulforaphane treatment blunted hepatic exposure of gut-derived LPS and suppressed hepatic TLR4 signaling pathway. Taken together, these results suggest sulforaphane as a novel therapeutic strategy in ALD-related liver fibrosis.
Page Top